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A LOCAL INTERPOLATOR DERIVED FROM THE
DISCRETE FOURIER TRANSFORM

i. INTRODUCTION

Interpolating between measured data points is a common signal processing problem. Standard
interpolation methods [1], which use polynominal fits to the sampled data, perform well, but even better
performance is desirable for critical applications. In a frame-differencing signal processor, for example,
the difference between two successive pictures is taken to "zero out" stationary backgrounds and render
faint moving targets detectable. Since the samples from the two pictures (usually) do not coincide, values
must be IntelrolatC1U d between sanples ot ule secould piature Lo compare Lo mule first. LuC iuLiZe i2LAcu1taly

this can be done, the less clutter will occur in the differenced image.

In the ideal case, when there is a large number of samples and the Nyquist sampling criterion is
satisfied, the Nyquist reconstruction formula (NRF) supplies the answer [2, e pluribus unum]. But the
theoretical NRF uses an infinite sum, which must be truncated in some manner for practical application
and generally performs poorly near the edge of a picture (for example), where the truncation becomes
severe.

Polynomial spline techniques lack computational simplicity because they require a global solution:
interpolated values at any point depend on data points that are far away [3]. Furthermore, if a
higher-order spline is desired, a completely different solution must be applied.

The usual approach to purely local interpolation is to apply a low-order polynomial fit to the data
in a short, sliding window consisting of an even number of points (e.g., AN = 2, 4, or 6) to obtain
interpolated values between the two central points. Figure 1 illustrates the problem for N = 4. Since only
a few points are used, interpolations can be done very close to the edge of the picture. The discrete
Fourier transform DkFT) interpolator described here is also local in nature, hence is computationaily easy
to apply. Furthermore, it uses the same formula for any number of data points and, depending on the data
sampling rate, can give results superior to the local polynomial interpolators.

+ SAMPLED DATA, Jxnt
>< RESAMiPLING POINT

-2 -t 0 1 2 3

SAMPLE NUMBER

r:1g I -IrL ~2
rig. I -The soUUd Curve represents the analog signal. an
interpolated value at the shifted position s must be found from the
sampled data and compared to the analog signal.

Manuscript approved February 25, 1992.
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2. TIE DFT INTERPOLATOR

Appendix A shows how the DFT and the Fourier shift theorem (FST) can be used to motivate
a definition for an analog of the NRF for a limited number of data points. In one dimension, for an even
number of points, the result is Eq. (A7), which is always applied with n = N12-1; as with the local
polynomials, interpolations are done only between the two central points in a sliding window, as indicated
in Fig. 1. Putting this restriction into Eq. (A7) and appropriately relabeling the summation index to
conform to Fig. 1, we have an interpolation formula to apply to a set of points {xj},-N/2-1) • a < N/2,
to obtain an interpolated value for the point x3, 0 c s < I

_fl I sin [r(s - n)] (1
~s7 4N tan [7s - OiN'

when N is even. The forms for odd N and for two dimensions are given by Eqs. (AS) and (A9). Note
that since N -tanir(s - n/NI -. ir(s - n) as N -. co, Eq. (1) approaches the NRF in this limit.

Equation (1) has the form of a convolutional interpolation formula

N12

Xs = xn, A,,(s), (2
n= -(#N/2-)

where the interpolation coefficients As(s) are obtained from an interpolation function F(x) by

A"(s) = F(n-s). (3)

The interpolation function for DFT-N (N even) is obviously

Fix) = sin(7rx) R(x
N tan(7rx/N5)

where RN is the rectangle function of width N centered at the origin; that is,
Ri(x) = I for fix I < N12, R,(x) = 0 otherwise. Equation (4), as applied in Eq. (1), now stands as a
candidate interpolation function to be compared to conventional polynomial interpolation functions.

Previous applications of the DFT to the interpolation problem have centered on a "zero padding"
method in frequency space due to Schafer and Rabiner 141 and recently investigated by Fraser [51. This
method is appropriate if a number of additional samples evenly spaced between existing samples is
desired. An example would be a requirement for ten-times-denser resampling with nine equally spaced
new samples between each pair of existing samples. But the technique is not well suited to generating a
single new sample at an arbitrary location. The approach presented here is well suited to this problem
and can be shown to give the same interpolated value as the zero padding technique by manipulating
Fraser's Eq. (5). This can more readily be seen from his Eq. (6), which is derived from his Eq. (5), but
his Eq. (6) unfortunately contains an error that prevents the calculated interpolated value from being a
pure real number for nonintegral interpolation points (whereas his Eq. (5) does guarantee a real value).
Once this error is corrected (see Appendix B of this report), Fraser's Eq. (6) is identical (in content) to
this report's Eq. (A5).
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Finally, an alternate form of the interpolation function that does not run the computational risk
of a zero denominator is

1 ~~~~~1Q2-1 5
F(x) = + + cos(Wx) + 2 E cos(2n7rx/ RN(x) ()

for N even, and

F(x) = 1 [+ 2 cos(2n7rx/M] RN(x) (6)

for N odd.

Combining Eqs. (5) or (6) with Eqs. (2), (3), and (4) shows that the DFT interpolators are a

special case of trigonometric interpolation [6]. They are equivalent to using the lowest-order trigonometric
polynomial that can fit N sample points over the interval (-N12,N12) when the sample points are at
-N12 + 1, -N12 + 2, ...,N12, for N even and at -(N - 1)/2, -(N - 1)/2 + 1, ...,(N - 1)/2 for N odd.

3. TESTING THE INTERPOLATOR

The coefficients of an N-point DFT are, of course, the coefficients of the first N12 + 1 terms

(including DC, see Section 4) in a Fourier series describing the data. If the data actually consisted of just
those discrete frequencies used by the DFT, then the interpolation would be exact. To see that the
interpolation formula works well on more realistic signals, even for small N (N = 4,6,8), it will be
compared to polynomial interpolators applied to a representative point spread function (PSF).

A PSF is used as a test waveform because it is the most rapidly varying signal that will occur in
most scenes and, therefore, the hardest to interpolate. (An example of a scene that can produce a more
rapidly varying signal is a positive-contrast point source located very close to a negative-contrast point

source, but such occurrences are rare.) The representative PSF chosen is a unit-height Gaussian, with
standard deviation a given in units of the sample spacing. Thus, by changing a, we can see how well an
interpolator works as a function of sampling rate.

The DFT interpolators are obtained from Eq. (1) with the appropriate value of N and will be
compared to polynomials that use the same number of data points to perform an interpolation. Thus
DFT-4, DFT-, and DFT-8 will be compared to third-, fifth-, and seventh-order polynomials,
respectively. The third order (cubic) interpolator used is that described by Wolberg [7] and extensively
investigated by Park and Schowengerdt 18], with the parameter cx chosen to be -0.5. This
"image-independent optimal choice" [8] emphasizes high fidelity at low frequencies. The fifth-order
(quintic) interpolator was derived by Schaum [9], using a more general method. The seventh-order
interpolator will be standard Lagrange interpolation [11, denoted LF-8 Jagrange function for N = 8).
The formulas for these interpolators are given in Appendix C. Figure 2 plots the interpolation functions
for all these interpolators.
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0

-4 -3 -2 -1 0 1 2 3 4

Fig, 2 - The tYFT interpolation functions from Eq. (4) for N =
A C C 'flL - ... 2. A..-f-., f m't U, C. IThe 9ULtJ[IUIIL u aiLVui aufuions obtU.eL ftoml
Appendix 3 and Eq. (3) ar included for comparison.

Figure 3 shows the results for a = I and worst-phased sampling (samples miss the peak of the
curve by the maximum amount). Figure 4 shows best-phased sampling (a sample occurs at the peak of
the curve). The DFT interpolators fit the peak of a Gaussian better than the polynomials but tend to ring
more at the foot of the curve. Errors calculated over the intervals shown in Figures 3 and 4 are given for
various a's in Table 1.

The following remarks about Table I emphasize worst-phased sampling because it is bound to

occur at many places in real data. For a = 1.5 (1.5 samples per standard deviation), the polynomials are
superior to their DFT counterparts, but the differences are small; with well-sampled data, all interpolators
perform well. For a = 0.5, none give acceptable results (though the polynomials may be marginally
adequate for best-phased sampling). The advantage of the DFT interpolators Decomes apparei 'Lr isle

intermediate case of a = I. DFT-4, 6, and 8 give somewhat better results than the corresponding
polynomials for root-mean-square (rms) errors and substantially better results for maximum errors.
(DFT-l0, not shown, yields a small further improvement, but the point of diminishing returns has been
reach- do)

The greater superiority of the DFT interpolators with respect to maximum errors than with
respect to rms errors (as shown in Table 1) can be important. In the frame-differencing signal processor
Alluded to earlier, for examnle- reducing maximum errors will more quickly reduce the number of false
alarms for a given threshold setting than reducing the rms error will.

The fact that DFT-7 gives worse results than DFT-6 is dealt with in Section 4. It is worth noting
that if the NRF is truncated to ten points or fewer and normalized to have unit response at zero
frequency, its performance is substantially worse than any of the interpolators shown here. It is also
worth noting that a = I is a somewhat critical value. If the PSF is sampled substantially more often than
once per standard deviation, the choice of interpolator becomes unimportant. If it is sampled substantially
less often, none perform well.
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Fig. 3- The solid curves are unit-height Gaussians with standard
deviation equal to the sample spacing. The dashed lines show how
well different interpolators perform in reproducing the Gaussians
from the marked samples, with worst-phased sampling.

N 
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Fig. 4 -Same as Fig. 1, but with best-phased sampling. In this
case, all the interpolators exccpt cubic fit the Gaussian peak almost
perfectly.
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Table I - Interpolation Errors*

a= Interpolation Worst Phase Best Phase
Method

max rms max rms

0.5 Cubic 0.33 0.084 0.022 0.006

Quintic 0.30 0.079 0.043 O0014

LF-8 0.28 0.076 0.071 0.022

DFT-4 0.28 0.077 0.066 0.021

DFT-6 0.26 0.070 0.091 0.034

DFT-7 0.23 0.064 0.13 0.063

DFT-8 0.25 0.067 0.11 0041

Cubic 0.050 0.013 0.032 0.012

Quintic 0.030 0.008 0.020 0.007

LF-8 0.022 0.006 0.013 0°005

DFT-4 0.032 0.011 0.029 0.010

DFT-6 0.016 0.006 0.014 0.005

DFT-7 0.084 0.026 0.073 0.026

DFT-8 0.010 0.004 0.008 0.003

1.5 Cubic 0.013 0.004 0.012 0.UN

Quintic O.005 0.002 0.006 0.002

LF-8 0.003 0.001 U.003 0.001

DFT-4 0.021 0.009 0.021 0.009

DFT-6 0.010 0.004 0.009 0.004

DFT-7 0.076 0.030 0.072 0.030

DFT-8 0.006 0.002 0.006 0.002

*Entries are maximum and root-mean-square errors over the intervals shown in Figs. I
and 2 for Gaussians with the indicated standard deviations
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Testing an interpolator on real data is very desirable but seldom possible; an interpolated value
can be calculated, but the true value to which it should be compared is usually not available. To show
that the superior performance of the DFT interpolators is not limited to Gaussian functions, they were
compared to the quintic polynomial interpolator on accurately simulated data. This was done by using
a scene simulator that produces images of the Earth as seen from a satellite, with 50- to 100-m resolution.
The PSF for the simulated scene is close to, though not exactly, a Gaussian (but, of course, very little
of the scene produces as hard-to-fit a signal as the PSF, so we should expect good interpolation
performance for a < 1). On scenes with little structure, all the interpolators performed well. On a highly
structured scene (including an aerial view of a city) with a 0.5, all interpolators gave about equally
poor results. With a 0.75, all gave reasonably good results, but the DFT interpolators performed
better than the polynomials by about the margins shown in Table 1 for a = 1 with worst-phased
sampling. With a > 1, all the interpolators performed well; quintic was slightly better than DFT-6, but
not quite as good as DFT-8.

The lesson of the simulated imagery and of Table 1 is that the DFT interpolators give better
performance at lower sampling rates (i.e., smaller a) than the polynomials.

4. DISCUSSION

To see why the DFT-based interpolation formulas work well, we first consider in more detail the
fact that interpolations are done only between the two center points of a sliding window.

Interpolation with the DFT and FST is sometimes done globally by transforming the entire data
string, multiplying the Fourier coefficients by the appropriate phase factors (as is done with the gk in
Apndaix 1), IN nnA rback rn s1 acne to obtin a s-e o in-toat- -A samnl- [l 1I 11i 1'h

flWFt~I&f AJ CUtI'. LL(UI.3IUJ.111111
5

LaL%.Zl. LU I~,W OpGYLV. LUJ MU111al CL 0%L UI 1LIALj9UiatLt1 00111j51%d L1Uv iJ. .11110

has the advantage of doing the interpolations between all data points simultaneously (as opposed to
between the two central points only) but often gives disappointing results because of edge discontinuities.

Discontinuities at the edges of a data set are a common problem with Fourier techniques; if the
data (or its derivatives!) do not wrap around smoothly, a Fourier analysis, which assumes cyclically
repeating data, "sees" a discontinuity at the edge. Near any discontinuity, a Fourier series converges
slowly and imperfectly, an effect known as Gibbs' phenomenon and covered in standard texts [12]. This
problem is generally dealt with by various "windowingt" methods (e.g., von Hann [13] or Hamming [141).
But these methods are imperfect (they impose their own structure on the image and are not band-limited)
and impractical in a small data set. Figure 5, in which six- and seven-point DFT's are applied to a ramp,
shows the effect of an edge discontinuity when interpolations are done between all the data points
simultaneously. The six-point DFT can do accurate interpolations between the two central points; in this
interval, the effect of the edge discontinuity is quite small. But interpolations for the seven-point DFT
are strongly affected in all intervals. From this example, we expect a DFT interpolator to give much
better results for an even number of points than for an odd number, and the comparison of DFT-7 with
DFT-6 in Table 1 shows this to be the case.

Once a DFT-based interpolation formula is considered to be a standard interpolation process
(applying only to the center interval of a sliding window), it becomes apparent that the main reason for
its success is its good frequency response.

An N-point DFT describes its input data in terms of a few "allowed frequencies, " i.e., frequencies
for which an integral number of cycles fit exactly into the interval covered by N sample points. The
maximum frequency contained in the DFT isfm - 1/2, (i.e., one cycle per two samples), regardless of
the number of samples. Thlus even a fVew-point UFT directly measures the highest frequency available in

7



ROBERT L. LUCKE

Fig. 5 - The dashed curves show the values interpolated between
samples of a ramp by six-point (circles> and seven-point (squares)
DFT interpolators. The former reproduces the central interval in the
ramp very well, while the latter does not work well in any interval.

the sampled scene (the Nyquist frequency) as well as the lowest (the DC component>. Of course,
the few-point DFT has very poor frequency resolution; the difference between successive frequencies
is Af = 1/N, so there are only N/2 nonzero frequencies in the range from zero frequency to the Nyquist
frequency. The DFT approximates intermediate frequencies (such as one half-way between two of the
allowed frequencies) by a sum of the allowed frequencies.

The above remarks are for even N, which is the case of interest here. For the sake of
completeness, the corresponding quantities for odd N are Af I/N, as before, but fm = (1-I )M12;
therefore, the number of nonzero frequencies is (N - 1)/2. Thus a six-point and a seven-point DFT both
contain three nonzero frequencies; the difference is that the six-point (or any even-point) DFT contains
only the cosine phase of its highest frequency, while the seven-point (or any odd-point) OFT also contains
the sine phase, as shown in Fig. 6.

Fig. 6 - If three complete cycles of a sinusoid are covered by six
samples (circles), only the cosine phase (solid line> yields nonzero
values; the sine phase (dashed line) goes undetected. For seven
samples (squares), both signals are detected. The "missing"point on
the right belongs to the next six- or seven-point interval.

But even though a OFT interpolator has poor frequency resolution, it interpolates its allowed
frequencies perfectly, and these frequencies are evenly distributed across the spectrum. This results in
a more uniform frequency response than is possible with the polynomials that can be optimized to give
better fits at some frequencies than others [SI but cannot reproduce any nonzero frequency exactly (since
their outputs can only be a piece-wise continuous polynomial, not a true sinusoid). We will follow

29
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standard practice in taking the Fourier transform of the interpolation function as a useful measure of the
interpolator's frequency response (however, see below for further remarks on this point). The Fourier
transform of F(x) (which is easily found from Eq. (5)) is

I 12-
G(k) =-{sinc [N(k-112)] + sine [N(k+1/2)]} + X sinc [N(k-n/N)], (7)

n=-(N/2-1)

for even N, where sinc(x) - sin(irx)/(7rx).

Figure 7 shows the Fourier transforms of the cubic, quintic, LF-8, and DFT-4, 6, and 8
interpolation functions (all the transforms are real and symmetric, so only the positive halves are shown).
Note that the DFT interpolators have unit response at their allowed frequencies (i.e., unity atf = 1/4 for
DFT-4, at 1/6 and 1/3 for DFT-6, 1/8, 1/4, and 3/8 for DFT-8), except atf = 1/2, where the response
of 0.5 reflects the fact that only the cosine phase of this frequency is sampled. The maximum value at
lower frequencies is 1.03. Also note that the DFT interpolators have broader-band response than the
comparable polynomials. The ideal frequency response is the rectangle function RI (unity between ± 1/2,
zero oheriwise; U1IN is ULI rVuuiei UrLISIlUI1l Uo Wil Nips b ii1 JIILVtLJUIILIUII LUntIUII). TIiC L)7 Jr
interpolation functions approach this limit as their order increases. The approach is especially rapid at
low frequencies, which is important because the power spectral density of virtually all imagery has a
much higher value at low frequencies than at high frequencies.

Interpreting the Fourier transform of the interpolation function as the frequency response of the
interpolator is not as clear-cut as one would like, First, the term "frequency response" must be employed
carefully for an interpolator because it is not well defined; an input sinusoid produces an output that is
not a sinusoid. This is true for the polynomials at any nonzero frequency and for the DFTs at any
frequency other than the allowed frequencies. Second, as shown in Appendix D, if an interpolator
reproduces an input frequency exactly, then the Fourier transform will have the value unity at that
frequency, but the converse is not true. For example, the parameters of the cubic interpolation function
can be chosen so that its Fourier transform has unit value at some point in addition to zero [81, but since
the result of an interpolation is a piece-wise cubic function, an input sinusoid at that frequency is not
reproduced exactly.

_DrT4 DF70 DFTB

0 Q

>6

0 1/4 1/2 3/4 1
FREQUENCY

Fig. 7- The Fourier transforms of the cubic
(C), quintic (Q), LF-8, and DFT interpolation
functions. The Nyquist frequency isf = 1/2.
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5. CONCLUSION

DBT-based interpolators, when applied locally to the center of a sliding window, have been
shown to be a valuable addition to the signal processor's repertoire. On highly structured data, they can
extend good interpolation performance to lower data sampling rates than is possible with local polynomial
interpolators.
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APPENDIX A

Derivation of Interpolation Formula

The form of the Nyquist reconstruction formula for a limited number of data points is exhibited
below (Eqs. (tA 7), (A'8), or tra)). ^ s&etcu UI LUC U)L1VaL1UU i liv cii vl a UllG-UIIIIiiIUIll lD

Fourier transform (13F) for even N. The changes in the derivation for odd N are then indicated, and the
generalization to two dimensions is presented.

For a set of N equally spaced samples {xJ, 0 •En iN-1i from a ContiiuouS flnctionj(Vu) (i.e.,
xn = fAin)), the coefficients of the corresponding DFT are (following the conventions of Oppenheim and
Schafer [Al])

N-I

k= E x. e rrknN0•k•N-l (Ai)
13=0

Thus,

X= - - gk erj2r/N. (A2)
vk=O

I'%.tUglllLALig uiai. gN-k S k ILF C F. I alu uMI ltfl UCaL tn1 LVLta 1w SN/2 s N/2 - L- IUh1IflJJ W%

can write this as

Xn = N Igo .xg (-l) + 2Re e(A3)

The Fourier shift theorem (FST) [A2] states that if F(k) is the (continuous) Fourier transform of
tYx) then the Fourier transform of flx + sA is F(k,)xnflsY) The interpolation problem consists of finding

a value forfin + s) given {x^j. When the DFT is expressed in the form Eq. (A3), comparison of the
FST and the interpolation problem suggests the following definition of a new set of DFT coefficients:

gk gk ei-2ks&N for k•s N/2-I,

and

ga~ = go,2 pDgoJws) - 47 f~n>(A4)h N12 6NN J2 mSV/2 U/ 

where s, 0 • s 5 1 denotes the shift. The definition of g ',,2 is chosen to assure that the coefficient of
the highest frequency in the DFT is real, as it must be for N even, if it is to be the DFT of a real-valued

(as opposed to complex-valued) sequence of data. By defining {x",,, to be the sequence of real numbers
that will result from the inverse DFT of the coefficients defined in Eq. (A4) and substituting their values
in terms of the gk, we have a candidate expression for an interpolated sample:

11
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[lq+ + cosf('Sl + 2Re r (A 5)f+] (AS

Whether x,-F closely approximates An + s) remains to be seen (for n = N12 - 1 it does, see text). We
can now substitute for the g's from (Eq. (Al)), use the facts that (4)"-m cos(%s) cos[ir(n + s - mYI and

Nfl-I - uN/ -1 x _ (N-2V4 _U - (N 2t4
y 1 1 i u Nf _ _ _ _ _ _I( G

withinu = expj27r(n + s - m)WIN to obtain, for even N,

+ I sin [7fn+s-tl
XIj - N XM arsn -mh

rnO tan ['r(n +s - m)INJ

sin(rs) X. (- Ir- m cot r(n + s - m)InM (A?)
N r=

For odd N, N12-1 is replaced by (N - 1)12 in Eq. (A3) and go is the only term that appears outside the
summation. The rest of the derivation is unchanged. The result for odd N is

sinfrs) V x (_lyhrn csc [(n+s-m)/M(A8)

The generalization to two dimensions is obviously

x~ r =in( MS) sin k0F) E E X= l(-0in M k-{ cot [r(n+s-k)1M cot [hr(m+r-1MJ.fA9

Here the one-dimensional interpolation is applied sequentially in each direction. If either (both) of N and
M are odd, then the corresponding cotangent function(s) is (are) replaced by cosecant(s).

[All A.V. Oppenheim and R.W. Schafer, Digital Signal Processing (Prentice-Hall Inc., Englewood,
NJ, 1975), p. 89.

[A21 R.N. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill Book Company, New
York, 1978), pp. 121-2.
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APPENDIX B

Correction of Earlier Work

This appendix corrects an error in Fraser's 1989 paper on fast Fourier transform interpolation
[Bl]; it must be read in conjunction with that paper to be comprehensible.

N will be taken to be even (for N odd, Fraser's paper contains no error), so Fraser's N7-92 can
simply be replaced by N12. To see that Fraser's Eq. (6) contains an error, the special case U(N12) = real
number, all other U(k) = 0, will be considered. Then Fraser's Eq. (5), which correctly gives the values
interpolated from the original sequence, which is denoted by u(i), i = 0,1,,....N - 1, becomes

v(i') = V(N/2)expUj2wi'(N/2)(L1 + V(L-N12)expj2wri'(L-N12)IL]

= 0.5 * U(N/2) [expyiri'/IM + exp(-jiri'IM)]

= U(N12) cos(ini'/M), 1' = 0,1,2,....L -l, (31)

where Fraser's Eqs. (3) and (4) and L = M- N have been used. In Eq. (B1), the interpolated values are
always real. However, for the same speciail case, Fraser's E. (6)A, which is ostensibly obtained from his
Eq. (5) by letting iVIM - x (that is, letting i'/M become a continuous variable), gives

v(AMx) = U(N12) exp irx)

= U(N/2)expYiri'/A4 for x = OiM (B2)

which is not real for most V. Thus, there must be an error in Fraser's Eq. (6). After putting x = VIM
in Fraser's Eq. (5). a few straightforward steDs lead to

Nf2 -1 Nf2-1

v(Mx) = U U(k)expQ27rkx/l + S U(k) * exp(-j2irkxIN)
k-0k=

+ 0.5U(N/2)[expY7rx) + exp(-j7rx)], (B3)

where use has been made of the fact that U(N12) must be real because it is the N/2 coefficient of an
1TrtV1L, T-FT (wii k ven) oIVcj real data. 'iiis Is ule correct version of rraser's Eq. (6). it can be seen to
be identical in content (though not in the I/N normalization convention) to this report's Eq. (A5) by
setting x = n + s.

REFERENCE

[l3] D. Fraser, "Interpolation by the FFT Revisited-An Experimental Investigation," IEEE Trans.
Acous., Speech, and Sig. Proc. 37, 665-75 (1989).

13



APPENDIX C

Polynomial Interpolation Formulas

The formulas used for the polynomial interpolators are given below.

Cubic Ouintic

2 -- 1 3

n~~~~~-1 ~ ~ ~ T-n= -2
where

A-1 = s(l-s)2 B-2 = s(2-s)-s3(9 - 13s + 5s2)

AO = 2-s2(5-3s) B1 = - 16s(i-s) + P3(39 - 64s + 25s2)

Al = s(i + 4s - 3s2) Bo = 24 - 30s 2 - s3(70 - 126s + M2)

A2 = - s2kl s) B1 = 16s(l + s) + s3 (66 - 124s + 50s2)

B2 = - s(2i-s) - s3(33 - 61s + 25s2)

B3 = s3(7 - 12s + 52)

Standard Lagrange interpolation [Ci] consists of fitting an (N - 1) order polynomial through N data
nnintc nPrei21f7PA tfn thf nrnhl0m of 1 "teresf here, #1- y i -r'-~~. jwt~'~ t, LA 

8
LflJ~44$LAt~O LLSL%.LV.~ iI., ULLL1iu0 L. 0.

X X., C., with C. = fl ((s-r).
n=-3 ~~m=-3 (n-rn)

mgn

REFERENCE

[CI] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Ninmrican Recripes
(Cambridge University Press, New York, 1986), Ch. 3.
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APPENDIX D

Interpolation Errors for Pure Sinusoids

First we define two error terms EC and E, by the equations

£ cos(2xrkm) F(s-m) = cos(2irks) + E(ks) (D1)
m--(NI2-1)

and

N12

E sin(2irkm) F(s-m) = sin(27rks) + E/(ks), (2)
m--(N12-1)

where 0 < s < 1. The left-hand sides of Eqs. (DI) and @2), where F(x) is the interpolation function
from Eq. (3), will be recognized fromEq. (1) as the interpolated values of cosine and sine inputs,
respectively. Thus, EC and E, are the errors resulting from the interpolation. In what follows, the first
equality is the Fourier transform of the interpolation function (which is an even function [e.g., Eq. (4)],
so its Fourier transform has no imaginary component). The second equality is obtained by the change of
variables x - m - s for each value of m. The third equality is then found by expanding cos[27rk(s -m)],
using F(m - s) = F(s - m), and substituting from Eqs. (Dl) and (Q)2).

G(k) = F(x) cos (2irkx)dx (D3)

N12

-JO E cos[21rk(s-m)] F(s-m)ds (D4)
m--(N/2-1)

= 1 + J| (E,(ks) cos(27rks) + E,(ks) sin(2rks))ds. (D5)

This is the desired result: if EC = ES = 0 for some k (e.g., for a DFT interpolator at an allowed
frequency), then G(k) = 1. But G(k) can be unity with Ec, Es • 0, if the integral in Eq. (D5) is zero.
There is, unfortunately, no simple relation between the error of the interpolator and the nonunity of the
Fourier transform of the interpolation function.
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